Abstract: Traditional k-means clustering is widely used to analyze regional and temporal variations in time series data, such as sea levels. However, its accuracy can be affected by limitations, ...
Abstract: In this paper, an improved K-means clustering algorithm, EGLK-Means, is proposed, which optimizes the clustering results by enhancing global and local information. The traditional K-means ...
Dr. James McCaffrey presents a complete end-to-end demonstration of anomaly detection using k-means data clustering, implemented with JavaScript. Compared to other anomaly detection techniques, ...
Rocky high steep slopes are among the most dangerous disaster-causing geological bodies in large-scale engineering projects, like water conservancy and hydropower projects, railway tunnels, and metal ...
ABSTRACT: Domaining is a crucial process in geostatistics, particularly when significant spatial variations are observed within a site, as these variations can significantly affect the outcomes of ...
A high-performance Parallel K-Means Clustering algorithm implemented in C++ with OpenMP for parallelization. This project demonstrates the use of advanced clustering techniques with efficient ...
ABSTRACT: The use of machine learning algorithms to identify characteristics in Distributed Denial of Service (DDoS) attacks has emerged as a powerful approach in cybersecurity. DDoS attacks, which ...
This project consists in the implementation of the K-Means and Mini-Batch K-Means clustering algorithms. This is not to be considered as the final and most efficient algorithm implementation as the ...
一些您可能无法访问的结果已被隐去。
显示无法访问的结果